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SUMMARY

Four methods for the detection of influential observations are described. The identification
of observations having an influence on the linear regression model of the structure of the
aphid population and their subsequent elimination from the dataset are non-trivial tasks,
when the main purpose is to determine the significance of the regression coefficient for
precipitation. In this paper a comparison of the effectiveness of the described methods for
studies of aphidofauna is presented and discussed.

Key words: Influential observation, multiple polynomial regression, aphidofauna

1. Introduction

The scientific planning of each of the various operations in entomology trials
1s based on proper experimentation that yields statistically valid and easily
verifiable results. Analyses of these trials usually involve multiple regression
procedures to identify relationships between several independent variables and a
dependent variable. The term ‘multiple regression’ was first used by Pearson
(1908). The general computational problem that needs to be solved in multiple
regression analysis is to fit a straight line or curve to a number of experimental
points of each two dimensional subspace of a k-dimensional space. A 'best'
regression model is sometimes developed in stages. The stepwise procedure or the
backward removal procedure may be applied to the building of the regression
model. After applying one of these simple model-building procedures, it is
necessary to make an analysis in order to detect influential observations.

This paper has been written to assist researchers concerned with aphidofauna
trials in applying appropriate methods for the detection of influential
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observations. The general purpose of the analysis is to determine the significance
of the regression coefficient for precipitation in the multiple regression model of
the structure of the aphid population.

2. Linear model

Let y be the n-dimensional vector of observations of the dependent variable, X
be the (nxp) full-column rank matrix of observations of the k (k<p<n)
independent variables and P be the p-dimensional vector of the structural
parameters. Using this notation we can write

y=Xp +¢g, 2.1

where € is the n-dimensional vector of random variables having normal
distribution with expectation zero and the same standard deviation 6. From the
Gauss-Markov theorem we know that B (X'X)~ Xy is the unique linear
unbiased estimator of B having minimum variance. This estimator is called the
best linear unbiased estimator. The vector of ordinary residuals e=[el,e2,...,en] is
givenby e=y-y=y-— XB (I-H)y, where

H=XXX)" X 2.2)

denotes the (n % n)-dimensional orthogonal projector. Moreover, the estimator of
variance G2 is of the form 62 =e'e /(n—=p)=y' (I-H)y/(n—p) (Chatterjee,
Hadi 1986).

It is well known that there may be one or more influential observations. The
research problem concerns the identification of the influential observations in the
regression model. The methods of the detection of the influential observations are
numerous. In next section we will describe the most common ones. We will
consider methods based on measures defined by residuals or diagonal elements of
the orthogonal projector matrix.

3. Influential observations

The chosen model may be inappropriate because of the occurrence of large
values of residuals. Inferences made on the basis of such a model can sometimes
lead to incorrect conclusions. In this case we need to consider the influence of
certain vectors of observations on the values of residuals.
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The problem concerns the one or more vectors of observations. Let Z
denote an (nx (pt+1))-dimensional matrix. The rows of this matrix are ptl
dimensional vectors and its elements are formed by observations of the
independent variables and the dependent variable. The matrix Z has the following
form

Z=[X]y]=[(x1, 1), (x2,¥2) s (X3, ¥n) T 3.1

where vector z=(x, yi)'e RP*! for 1=1,2, ..., n, and the vector z is called the
vector observation. The one vector observation or the set of some number of
vector observations (say m, where m<n) we will call the influential observation or
the set of influential observations, respectively, when they significantly contribute
to changes in the values of the adjustment measures of the considered regression
model (2.1).

The influential vector observation may be detected by examining the diagonal
elements hii of the prediction matrix H of the form (2.2), i=1,2,...,n. The values
of the diagonal elements of this matrix are contained within the interval (1/n;1).
Assuming a certain threshold value, say hO, we can detect the influential
observations, which means to find the set of vector observations x; for which the
values of diagonal elements of H are greater than hy. It is known that we can
assume

ho=2(p+1) (3.2)
n

(Fox 2005). We can distinguish the influential observations among those which
are called leverage points or high-leverage points.

Let us denote by H* the (n x n)-dimensional matrix of orthogonal projection
on the column space of matrix Z of the form (3.1). The values of the diagonal
elements hy; of this matrix are related to the diagonal elements hii of matrix H
and residuals ei. If the residual ei, for a certain i, is high then it may be an outlier
observation.

We consider now the measure defined by Cook (1977) of the form

B- ﬁ(i))'xlx(ﬁ - ﬁ(i)) _ G- V) & - Yay)
pé? p&?

Di = ) (33)

i=1,2,...,n, where

A ~ e~ ] — ~ ~
Bay = B—l—_ij(x X)™'x; and Ya) =XBg)
11
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denotes the estimator of the vector of the structural parameters and the estimator
of the vector y, respectively, in the 1-cut regression model. This measure is called
the Cook distance. Now we can assume the threshold value DO and we can detect
the influential observations. The assumption has sometimes been made (Fox
2005) that the threshold value is of the form

4

Do =
0 n-p-1

(3.4)

but Fox (2002, p.198) is among many authors who recommend 4/(n-2) as “a
rough cutoff for noteworthy values of D;”.

A different influence measure is the measure described by Belsley, Kuh and
Welsch (1980). This is the measure called the DFFITS distance and it is the prime
indicator of influence. This statistic has the form

Yi —¥ig)
DFFITS; = ——=, (3.5)
' Sy1-hj
h A2 1 A2 ei2
where 0'(1) —m[(n—p)c _1_—1'11;]

The numerator of the statistic (3.5) gives the difference between the predicted
value for the i-th observation obtained by the model (2.1) using all observations
and the model estimated without that observation. The difference is standardized,
using the residual standard deviation estimate from all other observations.
Belsley, Kuh and Welsch (1980) suggest that the absolute values of DFFITS;

values exceeding
2, ﬂ P*1 ay DFFITS) (3.6)
n

and DFFITS, provide a convenient criterion for identifying influential
observations. ;

The set of selected single influential observations is the starting point for
investigation of the 2-dimensional and the larger dimensional joint influential
observations.

Generally we can consider an m-cut regression model. In this case we detect
the m- dimensional influential vector observation applying the Cook measure for
the m-cut model. The measure has the form (Cook, Weisberg 1980):
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D

By -B)XXBn - 1 . _ _
=0 O e a-H) B A-Hp ey,
po po

where the symbol I expresses here the distinguished numbers of influential vector
observations; there are m distinguished numbers. For m=2 we have two
distinguished numbers, I={i;j}, 1<i<j<n. The Cook measure has now the
form (Gray, Ling 1984):

D, =D, =B, +B, +B,,

where
hi h;
Bi=(D;+D,))(1+-2)*, By= —1 [e!(2-h,)+e’2~h,)],
g, 26°d: e
2eeh,
B; = Fz’dT’[Hh;—hﬁhﬁ] and d;=(1-h;)(1-h;)-h;.

y

If for I={i;j} the element h;; of the matrix H is greater than zero, h;>0, then for B;
>0 and e;e; >0 we say that these vector observations are joint influential, while
for B; <0 and e;e; <0 we say that these vector observations are not influential.
On the other hand if h;<0, then for B; > 0 and e;€; <0 we say that these vector
observations are jointly influential, while for B; < 0 and eie; >0 we say that
these vector observations are not influential. When observations are not joint
influential, but these observations are single influential, then we can say that the
influence of one is masked by the influence of the other (Lawrance 1995).

4. Research problem

The present analysis is based on the results of research into aphidofauna. This
was carried out in a green area of Poznan and has already been published in part
(Wilkaniec 2005). The experiment began in 1998 and finished in 2004. The
purpose of the research was to study the influence of weather conditions on the
extent of aphid occurrence. Detailed observations of numerous aphids and the
changing of the weather conditions were made from the beginning of May until
the end of October, at intervals of ten days. Several meteorological factors were
observed: the global daily temperature, the global minimum and maximum
temperature and the global precipitation in mm, and the number of days with
temperature > 30°C per ten days. Altogether 126 vectors of observations were
received.
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The analysis began with a study of the correlation between the independent
variables and the log-transformed dependent variable. The logarithm
transformation was applied to the dependent variable. Transformation of data was
carried out to achieve the following objectives: the equalization of variances and
the normalization of observations. A fundamental problem in the multiple
regression analysis is to eliminate insignificant variables. The backward removal
procedure was applied to the building of the regression model. After this
selection, a set of three independent variables was obtained: the date of catches,
the global maximum and the daily temperature. The sensitivity of aphids to
precipitation was taken into consideration. It is known that the structure of the
aphid population is related to precipitation (Dixon 1985, Fink and Volkl 1995).
The global precipitation was added to the regression model.

The following regression model was obtained:

y=-2.9658+0.14x, —0.0347x> +0.0019x +0.0515x, +
~0.0001x? —0.0118x, +0.0035x,

where y denotes the logarithm of the number of aphids, x; denotes the date of
catches (first ten-day interval,...,18" ten-day interval), x, the global maximum
temperature, x3 the global daily temperature and x, the global precipitation. The
adjustment measures for the above model are presented in the first row of Table 2.

The question arises whether the insignificance of the regression coefficient for
precipitation is caused by the occurrence of atypical observations. We applied the
four previously described methods for detection of influential observations (Table
1). As a result we found that the vector observation of rank 126 is a high-leverage
point, because the proper element hii of the matrix H is greater than h0=0.43, see
(3.2). The set of influential vector observations contains points of ranks 16, 108,
68, 107, 109, 62, 55, 67 and 35, because for each of them DFFITSi>0.535, see
(3.6). If the Cook measure (3.3) is used, the number of influential observations is
greater. All observations for which Di>0.034 are called influential observations,
see (3.3) and (3.4) — all are presented in Table 1.
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Table 1. Ordered values of the measures of the influence and ranks of vector observations

rank | hy | rank | h; rank Di rank | |DFFITS]
126 0.54 126 0.54 16 0.156 16 0.869
27 0.41 27 0.41 108 | 0.110 108 0.722
108 0.35 108 0.35 68 0.099 68 0.704
16 0.16 16 0.19 107 | 0.093 | 107 0.673
99 0.13 99 0.13 109 | 0.079 | 109 0.616
54 0.13 54 0.13 62 0.076 62 0.605
90 0.12 109 0.13 55 0.075 55 0.605
47 0.12 107 0.13 67 0.067 67 0.567
73 0.11 67 0.13 35 0.065 35 0.562
109 | 0.11 90 0.13 19 0.057 19 0.521
67 0.11 19 0.12 27 0.052 27 0.495
36 0.11 68 0.12 113 | 0.046 113 0.478
18 0.10 47 0.12 33 0.045 33 0.465
37 0.10 73 0.12 36 0.037 36 0.420
19 0.10 55 0.12 126 | 0.036 115 0.416
107 | 0.10 36 0.12 84 0.036 84 0.414
91 0.10 62 0.11 115 | 0.035 126 0.412
14 0.09 18 0.11 26 0.034 26 0.404
72 0.09 35 0.10 70 0.033 70 0.396
55 0.09 14 0.10 32 0.032 32 0.392
1 0.09 37 0.10 114 | 0.031 114 0.385
89 0.09 72 0.10 64 0.029 64 0.382
84 0.09 84 0.10 90 0.027 90 0.357
62 0.09 91 0.10 14 0.026 14 0.351
83 0.08 89 0.09 34 0.023 34 0.331
94 0.08 83 0.09 20 0.021 20 0.317
53 0.08 32 0.09 12 0.021 12 0.315
71 0.08 1 0.09 88 0.019 88 0.301
32 0.08 94 0.09 72 0.018 65 0.293
97 0.08 71 0.09 89 0.018 72 0.293
35 0.07 53 0.09 65 0.018 89 0.292
12 0.07 113 0.08 83 0.017 83 0.284
100 | 0.07 33 0.08 69 0.017 69 0.282
105 0.07 12 0.08 94 0.016 9 0.272
28 0.07 70 0.08 9 0.016 94 0.272
74 0.07 97 0.08 66 0.015 66 0.268
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In the next step of our analysis we removed different selected sets of
vector observations. For each choice we built the regression model and calculated
diagnostic measures. The diagnostic measures were useful and played an
important part in the analysis. We observed that by rejecting observations which
according to (3.4) are called single influential observations, we obtained a
regression model of the form:

y =—2.643+0.1368x, —0.0338x> +0.0018x +0.0532x, +
~0.0001x2 —0.0179x, +0.006x, .

We obtained this model after removing vector observations whose ranks
belong to the following set: {16, 108, 68, 107, 109, 62, 55, 67, 35, 19, 27, 113, 33,
36, 126, 84} (see Table 2). For each regression coefficient we calculated the p-
value, and it was smaller than 0.05 in each case, including for precipitation
(p=0.042).

Table 2. The diagnostic measures: the determmanon coefficient R2, the adjusted determination
coefficient R?, the standard deviation G the p-value for testing of hypotheses concerning the
regression coefficients

Rank of R? R ) p-value
removed o 2 3 2
. %) | (D) X X X X, X, X3 X,
observation

--= 59.1 | 56.7 | 0.483 [ 0.191 | 0.007 | <0.001 | <0.001 | <0.001 | 0.001 | 0.249

16 60.3 | 58.0 | 0.477 | 0.119 | 0.003 | <0.001 | <0.001 | <0.001 | 0.001 | 0.297
108 60.4 | 58.0 | 0.478 | 0.117 | 0.003 | <0.001 | <0.001 | <0.001 | 0.001 | 0.331
68 61.7 | 59.3 | 0.466 | 0.186 | 0.007 | <0.001 | <0.001 | <0.001 | 0.001 } 0.240

107 63.3 | 61.1 | 0.457 | 0.158 [ 0.006 | <0.001 | <0.001 | <0.001 | <0.001 | 0.369

109 64.1 | 61.9 | 0452 | 0.060 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 } 0.514

62 64.5 | 62.3 | 0.447 | 0.048 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.252
55 65.2 | 63.1 | 0.442 | 0.124 | 0.004 | <0.001 | <0.001 | <0.001 | <0.001 | 0.267
67 66.0 | 63.9 | 0.436 | 0.190 | 0.009 | <0.001 | <0.001 | <0.001 | <0.001 | 0.109
35 65.8 | 63.6 | 0.431 | 0.197 | 0.009 | <0.001 | <0.001 | <0.001 | <0.001 | 0.083
19 66.4 | 64.2 | 0.427 | 0.423 | 0.032 | <0.001 | <0.001 | <0.001 | <0.001 | 0.090
27 65.5 | 63.3 | 0.429 [ 0.381 | 0.027 | <0.001 | <0.001 | <0.001 | 0.001 | 0.077
113 67.1 | 649 | 0.417 | 0.550 | 0.048 | 0.001 | <0.001 | <0.001 | 0.001 | 0.060
33 67.5 | 654 | 0.409 | 0.447 | 0.033 | <0.001 | <0.001 | <0.001 | 0.001 | 0.059
36 672 | 65.0 | 0.407 | 0.334 | 0.019 | <0.001 | <0.001 } <0.001 | <0.001 | 0.063
126 67.0 | 64.7 | 0.409 | 0.279 | 0.016 | <0.001 | <0.001 | <0.001 | 0.008 | 0.055
84 678 | 65.6 | 0.405 | 0.211 | 0.010 | <0.001 | <0.001 | <0.001 | 0.007 | 0.042
115 69.5 | 67.4 | 0393 | 0.399 | 0.025 | <0.001 | <0.001 | <0.001 | 0.015 | 0.057

26 69.6 | 67.5 | 0.384 | 0.323 | 0.016 | <0.001 | <0.001 | <0.001 | 0.012 | 0.055
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These removed influential observations are marked in a two dimensional space
(x4;log(y+1)) (Fig. 1). It is very interesting that these influential observations lie
inside the area of experimental points.
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Fig. 1. The observations presented in a two dimensional space (x4;log(y+1)) and the removed
influential observations (marked points)

In this analysis we also calculated the Cook measures for 2-cut models. We
investigated each pair of the considered single influential observations (Table 3).
We observed that there were no opposing effects. The influence of one
observation was not masked by the influence of the other. This completed the
analysis.

The multiple regression determination coefficient, R?, explains how much of
the variability in the y's (logarithm of the number of aphids) can be explained by
the fact that they are related to x, (date of catches) and to x, (global maximum
temperature), x; (global daily temperature) and x, (global precipitation). For our
model this coefficient is equal to 67.8% and the adjusted coefficient of
determination equals 65.6%. The difference of these values is small, showing the
model to be well-chosen for practical purposes.
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Table 3. Ordered values of the Cook measure for the two-cut model for chosen pairs of observations
I={i;j}

Rank i Rank j Dy
108 107 0.773
16 35 0.495
68 67 0.390
16 27 0.374
55 19 0.331
108 33 0.300
16 109 0.299
62 67 0.299
108 90 0.283
16 14 0.250
108 68 0.248
108 109 0.240
68 107 0.240
16 84 0.240
16 126 0.234
16 55 0.233
68 62 0.232
68 19 0.228
107 109 0.223
108 36 0.222
16 36 0.221

5. Conclusions

The paper contains descriptions of four methods for detecting influential
observations. The Cook measure was considered, as was DFFITS, as well as
methods based on analysis of the elements of operators of the orthogonal
projection on the space of columns of the observation matrix and the space of
columns of the extended observation matrix. An evaluation was made of the
usefulness of these methods for showing that, apart from the sum of daily
temperatures and the sum of maximum temperatures, the sum of precipitation also
(together with those mentioned) has an influence on the size of the aphid
population. Different sets of influential observations were obtained. In the studies
presented, by removal of the influential observations identified using the Cook
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measure, a uniform dataset was obtained. A dataset is uniform if it does not
contain atypical data, i.e. data which interfere with the real relations between the
variables being studied. The other three methods for detecting influential data
proved ineffective here. The occurrence of 16 atypical observations in a set of 126
observations probably results from the confounding of many uncontrolled factors
in the process of catching aphids in a green area of Poznaf. An attempt was also
made to reduce the number of influential observations by use of the Cook
measure for an m-cut model. For the identified influential observations, however,
no masking effect was found to occur.
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